WOMEN'S UNIVERSITY IN AFRICA

Addressing gender disparity and fostering equity in University Education

FACULTY OF MANAGEMENT AND ENTREPRENEURIAL SCIENCES

BSc HONOURS DEGREE IN COMPUTER SCIENCE

MAIN PAPER

HCS 112: MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

INTAKE 3: FIRST YEAR FIRST SEMESTER

TIME: 2 HOURS AFTERNOON

INSTRUCTIONS TO CANDIDATES

Answer any **four** questions.

Question 1

a) Let
$$A = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 5 & -7 \\ 1 & 6 & 2 \end{bmatrix}$$

- i. Find the adjoint of the matrix A [5]
- ii. Hence or otherwise find inverse of matrix A [5]
- b) Let p = 2i 3j + 4k and q = i + 2j + k, show that the vectors p and q are orthogonal
- c) State De Moivre 's Formula [4]
- d) Show that $\cos 5\theta = 16 \cos^5 \theta 20\cos^3 \theta + 5\cos \theta$ [7]

Question 2

a) Solve:

i)
$$5x^2 + 2x + 2 = 0$$
 [3]

ii)
$$x^3 - 7x^2 + 17x - 15 = 0$$
 [5]

- b) Find the vector equation of the straight line which passes through the points (1, 2, 3) and is parallel to the straight line through the points (-1, 2, 7) and (2, 3, 4) [6]
- c) Let $p = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ and $q = \mathbf{i} 4\mathbf{j} + 5\mathbf{k}$. Find p.q and the angle between them [4]
- d) Find (2+3i)(1+2i) [2]
- e) Prove that if an n X n matrix A is multiplied by a scalar k, then the determinant of k is k^n det A [5]

Question 3

- a) If $z_1 = r_1$ ($\cos \alpha_1 + \mathbf{i} \sin \alpha_1$) and $z_2 = r_2$ ($\cos \alpha_2 + \mathbf{i} \sin \alpha_2$) Prove that $z_1 z_2 = r_1 r_2 (\cos(\alpha_1 + \alpha_2) + \mathbf{i} \sin(\alpha_1 + \alpha_2))$ [9]
- b) Show that $\cos^3 \alpha = x = \frac{1}{4} \cos 3\alpha + \frac{3}{4} \cos \alpha$ [9]
- c) Find the square root of 8 6i [7]

[4]

Question 4

a) Find the solution of the linear system using Cramer's rule

$$x_1 + 2x_2 + 4x_3 = 14$$

$$2x_1 + 6x_2 + 6x_3 = 28$$

$$3x_1 + 6x_2 + 10x_3 = 34 ag{13}$$

b) Prove that if the determinant of an nXn matrix A is 0, then the matrix does not have an inverse [12]

Question 5

a) Find A⁻¹ if
$$A = \begin{bmatrix} 1 & -2 & 4 \\ -4 & 0 & 3 \\ 2 & -1 & 0 \end{bmatrix}$$
 [6]

b) A straight line passes through the points (2, 1, 7) and (-3, 2, 5). Find

c) Show that
$$\sin 4\theta = \frac{1}{4}\cos 4\theta - \cos 2\theta + \frac{3}{4}$$
 using Euler's formula [12]

Question 6

Solve the system of equations

a)
$$2x_1 + 3x_2 - x_3 = 4$$

 $x_1 - 2x_2 + x_3 = 6$
 $x_1 - 12x_2 + 5x_3 = 10$ [15]

b) Convert each of the following complex numbers to a polar form

$$2\sqrt{3} + 2i$$
 [5]

c) Let
$$R = \begin{bmatrix} 3 & 4 & 1 \\ 0 & 2 & -6 \\ 8 & 5 & 7 \end{bmatrix}$$
 and $R^t = \begin{bmatrix} 3 & 0 & 8 \\ 4 & 2 & 5 \\ 1 & -6 & 7 \end{bmatrix}$ find $R - R^t$ and name the special name given to this matrix [5]

END